Lecture 11 : Hyperbolic Polynomials and Hyperbolicity Cones

نویسندگان

  • Ahmed El Alaoui
  • Nima Anari
چکیده

In this lecture, we will introduce the concept of hyperbolic polynomials, a generalization of real stable polynomials. We will also introduce the concept of hyperbolicity cones, which are the set of directions along which a polynomial is always real-rooted. We will prove that hyperbolicity cones are convex, study some of their properties, and invyestigate the connection between barrier arguments and hyperbolicity. It is recommended to look at [Brä] to complement these notes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth hyperbolicity cones are spectrahedral shadows

Hyperbolicity cones are convex algebraic cones arising from hyperbolic polynomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove a weaker version of this conjecture by showing that every smooth hyperbolicity cone is the linear projection of a spectrahedral cone, that ...

متن کامل

Exponential lower bounds on spectrahedral representations of hyperbolicity cones

The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree d in n variables contains (n/d) pairwise distant cones in the Hausdorff metric, and therefore that any semidefinite representation of such polynomials must have dimension at lea...

متن کامل

The Lax Conjecture Is True

In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov. Consider a polynomial p on R of degree d (the maximum of the degrees of the monomials in the expansion of p). We call p homogeneous if p(tw) = tp(w) for all real t and vectors w ∈...

متن کامل

Hyperbolic Polynomials and Generalized Clifford Algebras

We consider the problem of realizing hyperbolicity cones as spectrahedra, i.e. as linear slices of cones of positive semidefinite matrices. The generalized Lax conjecture states that this is always possible. We use generalized Clifford algebras for a new approach to the problem. Our main result is that if −1 is not a sum of hermitian squares in the Clifford algebra of a hyperbolic polynomial, t...

متن کامل

2 00 3 the Lax Conjecture Is True

In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov. A homogeneous polynomial p on R n is hyperbolic with respect to a vector e ∈ R n if p(e) = 0 and, for all vectors w ∈ R n , the univariate polynomial t → p(w − te) has all real ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016